SOME LAWS OF SPACECRAFT ORBIT CONTROL

PMM Vol. 32, No. 3, 1968, pp. 513-516
D.A. MAMATKAZIN
(Received July 31, 1967)
We consider the motion of a apacecraft acted on by a controlling acceleration in the plane perpendicular to the absolute velocity vector of its center of gravity. Control laws which make it possible to obtain the solution in analytic form are developed.

1. The motion of a apacecraft in a central gravitational field ander the action of the controlling acceleration W in the plane perpendicular to the absolute velocity vector V of its center of gravity O_{1} can be conveniently considered in a rotating right-hand orthogonal system $O x y z$ whose axis y coincides with the radius vector r constructed from the center of gravity O to the point O_{1}, and whose axis x is directed in the direction of motion in such a way that V lies in the plane $x y$. The orientation of the axes $O x y z$ relative to the inertial coordinates $0 \xi \eta \xi$ is defined (Fig. 1) by the longitudinal Ω of the ascending node, the

Fig. 1

Fig. 2
inclination i of the instantaneons orbital plane relative to the equator, and the range angle u.

The controlling acceleration vector W is mapped onto the normal and binormal to the trajectory of motion by the projections W_{n} and W_{z}; the inclination of the absolute velocity vector \mathbf{V} to the local horizon is defined by the angle θ (Fig. 2). The equations of motion of the spacecraft are

$$
\begin{gather*}
V_{x}^{\cdot}=-W_{n} \sin \theta+\omega_{z} V_{y}, \quad V_{y}=W_{n} \cos \theta-\omega_{z} V_{x}-g \\
0=W_{z}+\omega_{y} V_{x}, \quad \omega_{z}=-V_{x} / r, \quad g=g_{0}\left(R_{0} / r\right)^{2} \tag{i.1}
\end{gather*}
$$

The rates of change of the angles of the rotating axes relative to the inertial axes are defined by the familiar differential equations

$$
\begin{equation*}
\frac{d \Omega}{d t}=\omega_{y} \frac{\sin u}{\sin i}, \quad \frac{d i}{d t}=\omega_{y} \cos u, \quad \frac{d u}{d t}=-\omega_{z}-\omega_{y} \sin u \operatorname{ctg} i \tag{1.2}
\end{equation*}
$$

The exact solution of this problem for $W_{n}=0$ and $W_{z}=$ const for a circular orbit is cited in [1 and 2], while [3] also contains an approximate solution for the case of an elliptical orbit. Paper [4] contains a solation for the case $W_{n}=0, W_{z}=k r^{-3}$. Further on we shall write out the laws of variation of W_{n} and W_{n} which enable us to obtain the exact solution of the problem of motion of the spacecraft in general form (for circular, elliptical, parabolic, and hyperbolic orbits).
2. Equations (1.1) have the energy integral

$$
\begin{equation*}
1 / 2 V^{2}-g r=h \tag{2.1}
\end{equation*}
$$

Moreover, the first of these equations with allowance for the fourth can be transformed into

$$
\begin{equation*}
\frac{d\left(V_{x} r\right)}{d t}=-W_{n} \frac{r r^{*}}{V} \tag{2.2}
\end{equation*}
$$

This equation can be integrated in quadratures with the aid of Eq. (2.1) if the projection of the controlling acceleration onto the normal to the trajectory of apacecraft motion is $W_{n}=W_{n}(r)$. Kinematic Eqs. (1.2) are integrable if the projection of the controlling acceleration onto the binormal to the trajectory varies according to the law

$$
\begin{equation*}
W_{z}=K V_{x}^{2 / r} \quad(K=\text { const }) \tag{2.3}
\end{equation*}
$$

In this case, by virtue of the third and fourth equations of (1.1), we have

$$
\begin{equation*}
\omega_{y}=K \omega_{z} \tag{2.4}
\end{equation*}
$$

and the last two equations of (1.2) are reducible to an equation in total differentials, On integrating the latter, we obtain

$$
\begin{equation*}
\cos i-K \sin u \sin i=k, \quad k=\cos i_{0}-K \sin u_{0} \sin i_{0} \tag{2.5}
\end{equation*}
$$

We also note that by virtue of the second equation of (1.2), the argument i reaches its extremal values $i_{\text {i }}$ when

$$
u=1 / 2 \pi+m \pi \quad(m=1,2, \ldots, n)
$$

Eqs. (2.5) then become

$$
\begin{equation*}
-\left(1+K^{2}\right) x_{*}^{2}+2 k x_{*}+K^{2}-k^{2}=0 \quad\left(x_{*}=\cos i_{*}\right) \tag{2.6}
\end{equation*}
$$

With allowance for (2.4) and (2.5) we can reduce the second equation of (1.2) to

$$
\begin{equation*}
\frac{d x}{ \pm \sqrt{-(1+K)^{2} x^{2}+2 k x+K^{2}-k^{2}}}=-\omega_{z} d t \quad(x=\cos i) \tag{2.7}
\end{equation*}
$$

The quantity ω_{z} is a negative function of fixed sign, so that both sides of equation (2.7) are elways positive.

Since the differential $d x$ changes aign when the argument x passes through the extremal value $x=x_{*}$, and since the left side of (2.7) is always of fixed sign, we must break up the integration limits. To ensure positiveness of the left side of (2.7) in varions portions of the orbit, we set

$$
\begin{gather*}
\frac{d x}{ \pm \sqrt{-\left(1+K^{2}\right) x^{2}+2 k x+K^{2}-k^{2}}}=\frac{d x \operatorname{sign} x}{\sqrt{-\left(1+K^{2}\right) x^{2}+2 k x+K^{2}-k^{2}}} \\
\operatorname{sign} x^{n}=\operatorname{sign}(K \cos u) \quad(i>0) \tag{2.8}
\end{gather*}
$$

We can now write the integral of the left side of (2.7) as

$$
\begin{equation*}
J=\int_{x_{0}}^{x_{k}} \frac{d x \operatorname{sign}(K \cos u)}{\sqrt{-\left(1+K^{2}\right) x^{2}+2 k x+K^{2}-k^{2}}} \tag{2.9}
\end{equation*}
$$

In the case of a circular orbit $\omega_{z}=$ const and the right side of (2.7) can be integrated in elementary fashion. If the orbit is not circular, we must first express the time in terms of the radius,

$$
\begin{equation*}
d t=\frac{d r}{V_{y}}=\frac{d r}{\sqrt{V^{2}-V_{x}^{2}}} \operatorname{sign} r^{\circ} \tag{2.10}
\end{equation*}
$$

Here V_{x} is a function of the radius r which we know once we have integrated (2.2). With allowance for (2.10) we can write the integral of the right side of (2.7) as

$$
\begin{equation*}
J=-\int_{r_{0}}^{r_{k}} \omega_{z} \frac{d r}{\sqrt{V^{2}-V_{x}^{2}}} \operatorname{sign} r \tag{2.11}
\end{equation*}
$$

This integral is easy to compute if the controlling acceleration normal to the trajectory of motion is given by the law

$$
\begin{equation*}
W_{n}=A V / r \quad(A=\text { const }) \tag{2.12}
\end{equation*}
$$

In fact, on integrating (2.2) we find in this case that

$$
\begin{equation*}
V_{x} r=B-A r, \quad B=\left(V_{x 0}+A\right) r_{0} \tag{2.13}
\end{equation*}
$$

and (2.11) becomes

$$
J=\int_{r_{0}}^{r_{k}} \frac{(B-A r) d r \operatorname{sign} r^{*}}{r \sqrt{a r^{2}+b r+c}} \quad\binom{a=2 \hbar-A^{2}, c=-B^{2}}{b=2\left(g_{0} R_{0}^{2}+A B\right)}
$$

From this expression we find that the extremal values of the radius r occur with $a r_{*}{ }^{2}+b r_{*}+c=0$.

Since the integrand in (2.11) is always of fixed sign, and since the differential $d r$ changes sign at the instant when $r=r_{*}$, we must break up the limits of integration if r passes through an extremom. To simplify our discussion, we assume everywhere from pow on that the arguments x and r do not pass through extremal values x_{*} and $r *$ throughout the entire time of action of the controlling accelerations W_{n} and W_{z} on the spacecraft. Here sign $x^{\circ}=\operatorname{sign} x_{0}{ }^{\circ}$ and sign $r^{\prime}=\operatorname{sign} r_{0}{ }^{\circ}$. Transforming the first two equations of (1.2) we obtain

$$
\frac{d \Omega}{d i}=\frac{\operatorname{tg} u}{\sin i}
$$

With allowance for (2.5) and (2.8), we transform this equation into

$$
\begin{equation*}
\Omega-\Omega_{0}=\int_{x_{0}}^{x_{k}} \frac{(x-k) d x \operatorname{sign}(K \cos u)}{\left(x^{2}-1\right) \sqrt{-\left(1+K^{2}\right) x^{2}+2 k x+K^{2}-k^{2}}} \quad(x=\cos i) \tag{2.14}
\end{equation*}
$$

Under the above assumption concerning the way in which the arguments x and r vary during the action of the controlling accelerations, integration of (2.9) yields

$$
\begin{gathered}
J=-\frac{\operatorname{sign}\left(\cos u_{0}\right)}{\sqrt{1+K^{2}}}\left[\arcsin \frac{-\left(1+K^{2}\right) \cos i+k}{x}-\arcsin \frac{-\left(1+K^{2}\right) \cos i_{0}+k}{x}\right] \\
\left(x=K \sqrt{\left.1+K^{2}-k^{2}\right)}\right.
\end{gathered}
$$

and integration of (2.11) gives as

$$
\begin{array}{r}
J=\operatorname{sign} r_{0} \cdot\left[\left(\arcsin \frac{b r+2 c}{r \sqrt{-\Delta}}-\arcsin \frac{b r_{0}+2 c}{r_{0} \sqrt{-\Delta}}\right)+\quad\left(a<0, \Delta=4 a c-b^{2}<0\right)\right. \\
\\
\left.+\frac{A}{\sqrt{-a}}\left(\arcsin \frac{2 a r+b}{\sqrt{-\Delta}}-\arcsin \frac{2 a r_{0}+b}{\sqrt{-\Delta}}\right)\right]
\end{array}
$$

$J=\operatorname{sign} r_{0}{ }^{\circ}\left[\left(\arcsin \frac{b r+2 c}{r \sqrt{-\Delta}}-\arcsin \frac{b r_{0}+2 c}{r_{0} \sqrt{-\Delta}}\right)-\right.$

$$
\begin{equation*}
\left.-\frac{A}{\sqrt{a}} \ln \frac{2 \sqrt{a\left(a r^{2}+b r+c\right)}+2 a r+b}{2 \sqrt{a\left(a r_{0}^{2}+b r_{0}+c\right)}+2 a r_{0}+b}\right] \tag{a>0}
\end{equation*}
$$

$J=\operatorname{sign} r_{0} \cdot\left[2\left(\operatorname{arctg} \frac{\sqrt{b r+c}}{B}-\operatorname{arctg} \frac{\sqrt{b r_{0}+c}}{B}\right)-\frac{2 A}{b}\left(\sqrt{b r+c}-\sqrt{b r_{0}+c}\right)\right](a=0)$
In the case of a circular orbit, i, e. when $\Delta=0$, we have

From (2.10) we have

$$
\begin{equation*}
J=\frac{V_{0}}{r_{0}}\left(t-t_{0}\right) \tag{2.15}
\end{equation*}
$$

$$
\begin{gather*}
t-t_{0}=\frac{\operatorname{sign} r_{0}}{a}\left[\sqrt{a r^{2}+b r+c}-\sqrt{a r_{0}^{2}+b r_{0}+c}+\right. \\
\left.+\frac{b}{2 \sqrt{-a}}\left(\arcsin \frac{2 a r+b}{\sqrt{-\Delta}}-\arcsin \frac{2 a r_{0}+b}{\sqrt{-\Delta}}\right)\right] \quad(a<0, \Delta<0) \\
t-t_{0}= \\
 \tag{a>0}\\
\quad \frac{\operatorname{sign} r_{0}}{a}\left[\sqrt{a r^{2}+b r+c}-\sqrt{a r_{0}^{2}+b r_{0}+c}-\right. \\
\\
\left.\quad-\frac{b}{2 \sqrt{a}} \ln \frac{2 \sqrt{a\left(a r^{2}+b r+c\right)}+2 a r+b}{2 \sqrt{a\left(a r_{0}^{2}+b r_{0}+c\right.}+2 a r_{0}+b}\right] \quad(a>0) \\
t-t_{0}=\frac{2}{3 b^{2}}\left[(b r-2 c) \sqrt{b r+c}-\left(b r_{0}-2 c\right) \sqrt{\left.b r_{0}+c\right]} \quad(a=0)\right.
\end{gather*}
$$

and (2.14) yields

$$
\begin{aligned}
\Omega-\Omega_{0}= & \frac{\operatorname{sign}\left(\cos u_{0}\right)}{2}\left\{\arcsin \frac{1}{x}\left[-\frac{(k+1)^{2}}{\cos i+1}+K^{2}+1+k\right]-\right. \\
& -\arcsin \frac{1}{x}\left[-\frac{(k+1)^{2}}{\cos i_{0}+1}+K^{2}+1+k\right]+ \\
& \left.+\arcsin \frac{1}{x}\left[-\frac{(k-1)^{2}}{\cos i-1}-K^{2}-1+k\right]-\arcsin \frac{1}{x}\left[-\frac{(k-1)^{2}}{\cos i_{0}-1}-K^{2}-1+k\right]\right\}
\end{aligned}
$$

In the special case where $K=0$, Eqs، (1.2) and (2.4) yeild

$$
\begin{equation*}
\Omega=\Omega_{0}, \quad i=i_{0,} \quad u-u_{0}=-\int_{i_{0}}^{t} \omega_{z} d r \tag{2.18}
\end{equation*}
$$

Recalling (2.10) and the last equation of (2.16), we find from (2.11) that

$$
J=u-u_{0}
$$

All of the possible orbits described by Formulas (2.15) are conic sections in the scanning plane. The orientation of these sections varies with time,
the orbit is elliptical for $a<0, \Delta<0$
the orbit is circular for $a<0, \Delta=0$
the orbit ia parabolic for $a=0$
the orbit is hyperbolic for $a>0$.
The motion of the orbital plane is characterized by the last formula of (2.15); its character does not depend on the shape of the orbit. The set of Formulas (2.1), (2.5), (2.13) and (2.15) enables us to predict the future parameters of the orbit and the position of the spacecraft under action by the controlling acceleration W with the componente ${ }_{F}=A \mathrm{~V} / \mathrm{r}$ and $W_{z}=K V_{x}{ }^{2 / r}$, and thus to effect the required control in the clams of orbits wifh a constant energy integral.
3. For example, let us determine the transfer factors K and A for control lawe (2.3)
and (2.12) which ansure tranfer of the spacectaft from an elliptical orbit to a precalculated circular orbit. From the angles Ω_{0} and i_{0} at rhe beginning of control and the angles Ω_{k} and i_{k} at the end of control we can determine the value of K which ensures coincidence of the plane of the apacecraft orbit with the required plane by molving the last equation of (2.15). According to the elliptical theory of motion, the radius of a circular orbit with a prescribed energy integral is givan by Formula

$$
r_{k}=-g_{0} R_{0}{ }^{2} / 2 h
$$

the velocity on the orbit is

$$
V_{x k}=V_{k}=\sqrt{-2 h}
$$

Having determined r_{k} and V_{k}, we can find the tranafer factor A in accordance with (2.13) from Formula

$$
A=\frac{V_{x k} r_{k}-V_{x 0} r_{0}}{r_{0}-r_{k}}
$$

On attainment of the equalitios $\Omega=\Omega_{k}$ and $i=t_{k}$ the controlling acceleration W_{z} is terminated and the orientation of the orbital plane is recorded. On attainment of the equalitien $r=r_{k}$ and $V_{x}=V_{x k}$ the controlling acceleration W_{n} is terminated, and the shape of the orbit is recorded (according to (2.13), the area integral becomes conatant).

The method of determining the factor K remains similar to the above in the other possible cases of controlled motion. The factor A is determined from the preacribed value of area integral (2.13) at the end of the controlled motion and from the orientation of the oabit of precalculated shape in apace.

BIBLIOGRAPHY

1. Illarionov, V.F. and Shkadov, L.M., Rotation of the plane of a circular satellite orbit. PMM Vol. 26, No. 1, 1962.
2. Gua'kov, In.P., A method of orientating the plane of a circular orbit of a satellite. PMM Vol. 27, No. 3, 1963.
3. Lass, H. and Solloway, C.B., Motion of a astellite under the influence of constant normal thrast. ARS Journal Vol. 32, No. 1, 1962.
4. Kopnin, lu.M., On the problem of turn the orbit plane of a satellite. Koamich. Issled. Vol. 3, No. 4, 1965.
