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CONTROL 

We consider the motion of a apacecraft acted on by a controlling acceleration in the plane 
perpendicdar to the abrolute velocity vector of its center of gravity. Control laws which 
make it poeaible to obtain the eolation in analytic form are developed. 

1. The motion of a npaceoraft in a central gravitational field ander the action of the 
controlling acceleration W in the plane perpendicular to the ebeolnte velocity vector V 
of ite Center of gravity O1 can be conveniently coneidered in a rotating right-hand orthogonal 
system Oxyr whose axis y coincidea with the radios vector r conetructed from the center 
of gravity 0 to the point O,, and whoee axie x is directed in the direction of motion in soch 
a way that V liea in the plane xy. The orientation of the axes Oxyr relative to the inertial 
coordinatee O&t ie defined (Fig. 1) by the longitudinal n of the ascending node, the 

Fig. 1 

inclination i of the inetantaneoue orbital plane 
relative to the equator, and the range,mgle u. 

The controlling acceleration vector W ia map 
ped onto the normal and binormal to the trajectory 
of motion by the projection6 IV,, and Vr; the in&n,+ 

tion of the absolute velocity vector V to the local horizon ie defined by the angle 8 (Fig. 2). 
The eqnationa of motion of the epaceoraft are 

9 ty 

Fig. 2 

v; = - W, sin 0 + o,Vy, v; = w, co9 8 - 0, v, - g 

0 = W, + Q),,V~, o, = -VJr, g = go (h/r)’ (i.1) 

The rates of ehaage of the angles of the rotating axee relative to the inertial uea are 
defined by the familiar differential equations 

!E= sin u 
dt *‘sin ’ dt 

L(uyCO*u, 
dtS 
dT=---Oz 

- ov ain u ctg i (I.21 

527 



The exact solution of this problem for W,t = 0 and I, = con& for s cfrcular orbit is 
cited in (I and z], while [3] also contains an approximate solution for the case of an el- 
liptical orbit. Paper [4] contains a solution for the case Ip, = 0, W, = krB3. Further on we 
shall write out the laws of variation of Iv, and Wn which enable us to obtain the exact 
solution of the problem of motion of the spacecraft in general form (for circular, elliptical, 
parabolic, and hyperbolic orbits). 

2. Equations (1.1) have the energy integral 

l/9V2- gr= h (2.1) 

Moreover, the first of these equations with allowance for the fourth csa be transformed 
into 

(2.2) 

This equation can be integrated in qaadratures with the aid of Eq. (2.1) if the pro- 
jection of the controlling acceleration onto the normal to the trajectory of spacecraft motion 
is Wn = Ipn (r). Kinematic Eqs. (1.2) are integrable if the projection of the controlling ac- 
celeration onto the binonnal to the trajectory varies according to the law 

W, = K V,“jr (K = const) (2.3) 

In this case, by virtue of the third and fourth equations of (Ll), we have 

wy = Ko, (2.4) 

and the last two eqnations of (1.2) are reducible to an equation in total differentials. On 
integrating the latter, we obtain 

cos i - K sin u sin i = k, k = cos i, - K sin a0 sin iO (2.5) 

We also note that by virtue of the second equation of (f.2). the argument f reaches its 
txtremal values i+ when 

u = 1/3n + m3t (m = 1, 2, . . . . n) 

Kqe, (2.5) then become 

-(1 + Ka)x,l + 2ks, + KS - k2 = 0 (x. = cos i.) (2.6) 

With allowance for (2.4) and (2.5) we can reduce the second equatfon of (1.2) to 

dx 
+~/-_fl+K)~$+2kx+~_kkZ =--zdt (x=cosi) (2.7) 

(2.7) 
The quantity Ox is a negative function of fixed sign, so that both sides of equation 
are always positive. 

Since the differential dx changes sign when the argument 2 passes through the ex- 
tremal value x = x*, and since the left side of (2.7) is always of fixed sign, we must break 
up the integration limits, To enanre positiveness of the left side of (2.7) in various portions 
of the orbit, we set 

dx 

= j-,--(1 +KZ)x”+2kx+ K2-kka v-- (I + K;syy2;tz + K2 - k2 

sign 2’ = sign (K cos u) (i > 0) :(2-s) 

We can now write the integral of the left side of (2.1) as 
xk 

s dx sign (K GOS u) 

J=r. 1/-((i+~)z2+2kz+~-k~ 
(2.9) 
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In the case of a circular orbit O, =: coast and the right side of (2.7) can be integrated 
in elementary fashion. If the orbit is not circnler, we must first express the time in terms of 
the radius, 

(2.10) 

Here VX is a function of the radius r which we know once we have integrated (2.2). 
With allowance for (2.10) we can write the integral of the right side of (2.7) as 

(2.11) 

This integral is easy to compute if the controlling acceleration normal to the trajectory 
of motion is given by the law 

K = A V/r (A = con&) (2.12) 

In fact, on integrating (2.2) we find in this case that 

V,r = B - Ar, B = (V,, 4 Ah (2.13) 

and (2.11) becomes 

J = rk (B - Ar) dr sign r’ 

s 

a=2h- Aa, c=__Bz 

f, r I/a++br+c b = 2 (goRoz + Al?) 

From this expression we find that the extremal values of the radius I occur with 
ar,~+br,+c=O. 

Since the integrand in (2.11) is always of fixed sign, and since the differential dr 
change8 sign et the instant when r = r*, we must break up the limits of iiltagration if r 
passes through an extremum. To simplify our discussion, we assume everywhere from POW 
on that the arguments x and r do not pass through extramal values z+ and h throug&onr the 

entire time of action of the controlling acceleretione W,, and V, on the spacecraft. Here 
sign xt= sign x,’ and sign r’ = sign ro’. Transforming the first two equations of (1.2) 
we obtain 

dQ tgu 
z=gin 

With allowance for (2.5) and (2.8), we transform this equation into 

xk 

a-s&= 
f 

(x - k) ds sign (K cos u) 

x, (x2--l)i/ -(~+fP;)xa+2kx+KZ-k~ 
(t= COs if (2.f4) 

Under the above assumption concerning the way in which the arguments x and r vary 
during the action of the controlling accelerations, integration of (2.9) yields 

J=- sign (00s 44 
v i-t-P 

arcsin -(l+Ka)cosi+k _arcsin~(l+P)COSio-!-k 

x % I 
and integration of (2.11) gives us 

J = sign ro’ . br+2c . bra+2c arcsin - - arcsIn - 
rl/Z ro Ir-c6 

(a<O, A=4ao-bx<O) 

_ 
)I 



3 = sign ro’ 
N 

brf2o . br@.+-2c arosin -_ - arcsln ---- - 
r Y’-h r,m > 

_ AIn 2~u(ara+br+c)+2ar+b JG- 2Y’a (ad + bra + c) + 2aQ + b 1 f= >O) 
J = sign ro’ 

[( 
2 arclgC$E - arctg VT) -y (JQEj7 -r-j] +o) 

In the case of a circular orbit, i.e. when A = 0, we have 

i-t”= y[ft/arr+br+c- farea+&ro+c- sign ro* 

L 

b ln 2V4(ar8+br+c)+2ar+b 
i-j”z 2 1/a (m? + br0 + 0) + 2~0 + b I (a> 0) 

and f2. X4) yi&ifi 

s2--s2~0= _*l+R+lth - 
1 

- amin 1 % ll -g-&++++i+kl+ 
+ arcsin $ - (k-_f)2_XL~+Ip 

I 
- arcsin?- - (?c--)r 

0X1-i x coSi@--i 

In the special csse where K.= 0, Eqs, (1.2) aud (2.4) yeild 

t 

Q=Ql, i = ia, u--u@=- 

f 
@zdr f2.W) 

Becafling (2.10) and the lost equation of f2.1@, we find from (2.11) that 

J =?I,--lb* 

All of the possible orbits described by Formulas (2.15) are conia sections iu the scau- 
ning plane. The orientation of these sections varies with time, 

the arbit is elliptical for a .< 0, A .< 0 
the orbit is circular for u < 0. A 3: 0 
the orbit is parabolic for u = 0 
the orbit is hyperbolic for s > 0. 

The motion of the orbital plane is characterized by the Xast formula of (2.15); fts 
character does not depend on the shape of the orbit. The set of Formals (2.1). (2.5). (2.13) 
aud (2.15) enables us to predict the future prametera of the orbit and the positfort of the 
spacecraft uuder action by the controXiing acceleration W with tke Eompermnta iF = &Y/r 
and W, z XV */r, and thus to effect the required control in the clus of orbits w!ib a 
constant ene&y integral. 

3. For example, let us detcrmiue the transfer factors K end A for con&of laws (231 
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and (2.12) which ensare tranfer of the apacecraft from an alliptioal orbit to a precalcnla- 
ted cfroular orbit. From the angles G and 1. at rhe beginning of control and the angles 
0 
o ! 

and fk at the and of control we can determine the value of K whiah enawes coincidence 
the plane of the spacecraft orbit with the required plane by solving the last equation of 

(2.15). According to the elliptical theory of motion, the radios of a aircolar orbit with a 
prsrcribed energy integral is given by Formula 

rk = -g,R,alZh 

the velocity on the orbit is 

V xg=Vk=)1_2h 

Ef-fw dat-fd ‘k and vk, we can find the transfer factor A ia aocordattca with 
(2.13) from Formula 

A= vxkrk-v~OrO 

rO-‘k 

On attainment of the equalities 0 = hz 
1 

and f - fk’the controlling eaashwadon w, is 
terminated and the orientation of the orbita plane is recorded. On attslsment of the aqaali- 
ties?-?k and V,- V,b the controlling ~accelaratkk Wn ir tarminetad, ad the ebapa of 
the orbit im recorded (according to (2.13), the erae intagrel bacomee conetaut). 

The method of determining the factor K remains similar to the above in the other pos- 
sible cameo of controlled motion. The factor A in determined from the premclibed valae of 
area integral (2.13) at the end of the controlled motion and from the orientation of iha orbit 
of pr~calcnlated shape in space. 
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